œ

Physico-chemical investigation of clayey rock/cement-based materials interaction in the context of geological waste disposal: experimental approach and preliminary results

A.DAUZERES ¹², P.LE BESCOP ¹, P. SARDINI ²

¹ Laboratory of Concrete and Clay Behaviour Studies (LECBA) CEA Saclay - Bât.158 - 91191 Gif sur Yvette-France

² Hydrogeology Clay Soil and Alteration (HYDRASA) – FRE 3114 University of Poitiers-Bât. sciences naturelles, 86000 Poitiers-France

Objectives

Transport cell experimental device

The clayey rock hydration induce a swelling and a dislocation without confinement.

Composite embedding with a fluid resin to freeze the final microstructure.

—			
FX	beri	Ime	2TT S

Materials

CEM I Cement paste disc

Val d'Azergues (LAFARGE)

Diameter = 42 mm w/c = 0.4

Remoulded clayey rock disc

Callovo-Oxfordian formation from Meuse/Haute-Marne

Depth : – 490m

Characterizations ¹	Unit	CEMI	Remoulded clayey Rock
Disc diameter	mm	42	42
Thickness	mm	5	5
Mercury porosity	%	23	18
Total water porosity	%	34	-
Hydraulic Conductivity	m.s ⁻¹	4.1.10 ⁻¹¹	3.5.10 ⁻¹²
Saturation state	%	92	60

¹ LECBA 2008

DEN/DANS/DPC/SCCME

 ${}^{\texttt{C}\texttt{CEA}}$: no reproduction or distribution possible without authorization of CEA

Cement paste/clayey rock interactions

e		Chemical composition of clayey rock pore solution (25°C)				
	Interstitial solutions	Concentrations (mmol. 1 ⁻¹)				
		Na ⁺	45.6			
		К+	1			
	Solution compositions are determined by	Ca ²⁺	7.3			
UNTROLITÉ	ionic chromatography.	Mg ²⁺	6.6 Sulphato			
POITIERS		Sr ²⁺	0.2 Suprate			
		CI	31 attack			
	Interstitial solutions of hardened cement	SO42-	15.6			
	paste are extracted with a press	HCO3	^{3.3} Hydrolysis			
	Loading: 280 to 660 MPa	SiO2(aq)	0.2			
	Loading. 200 to 000 mi a.	pH	7.1 Carbonation			
		pCO ₂ (atm)	1.3.10 ⁻²			
	Resaturation solutions are very different :	* BRGM Report RP-5441	б			
		Chemical compositio	n of CEM I pore solution			

-Hyperalkaline solution for the cement paste (pH>13.5).

-Neutral mineralized aqueous solution for the clayey rock with a CO_2 partial pressure of 1.3%.

(28 and 90 days, w/c = 0.4)Concentrations (mmol.1⁻¹) [K⁺] [Ca²⁺] [Na⁺] [CI] [SO4² Time pН 28 days 13.6 47.3 452.3 0.8 1.3 5.6 б.б 90 days 13.64 50.3 474.1 1.6 0.6

Alkaline plume

DEN/DANS/DPC/SCCME

Cement paste/clayey rock interactions

Cement paste/clayey rock interactions

DEN/DANS/DPC/SCCME

Cement paste/clayey rock interactions

interactions - Octobre 2008- Le Croisic 9

DEN/DANS/DPC/SCCME

©CEA : no reproduction or distribution possible without authorization of CEA

The two main evolutions observed on the clay material are the ettringite precipitation and the illitisation over 10µm.

	Experiments				Cement paste/clayey rock interactions					
œ	Preliminary results		Di	Diffusive transport experiment, 2 months, 25°C						
	First conc	lusions :	: 4 main	pheno	mena					
Clayey rock		Cement paste								
Illitisation										Carbonation
	125 100	75 50) 25	0µm	25 50	75	100 125	150	175	200
Ettringite precipitat	ion									Ettringite precipitation
										Portlandite hydrolysis

Cement paste alteration in clayey solution

f CEA Mechanisms and modelling of waste/cement interactions - Octobre 2008- Le Croisic 13

DEN/DANS/DPC/SCCME

©CEA : no reproduction or distribution possible without authorization of CEA '

Cement paste alteration in clayey solution

DEN/DANS/DPC/SCCME

©CEA : no reproduction or distribution possible without authorization of CEA

The altered zone increase with the time.

©CEA : no reproduction or distribution possible without authorization of CEA

Cement paste alteration in clayey solution

Elementary cartography FEG SEM (x6000)

©CEA : no reproduction or distribution possible without authorization of CEA

DEN/DANS/DPC/SCCME

Cement paste alteration in clayey solution

Preliminary observations

DEN/DANS/DPC/SCCME

©CEA : no reproduction or distribution possible without authorization of CEA

Simulations

œ	Preliminary simulations on the cement paste degradation by clayey solution						
	Simulations were r ANDRA, CEA, EDI	ealised with the ALL =.	IANCES numerical p	lat-form developed by			
UNIVERSITÉ DE POITIERS	An exponential diff Tognazzi lav $D_{Togn} = D_{ini}.ex$	iffusion law, Richet- aw is imposed : $exp(9.95(c_{-}c^{ini}))$ Reactive-transport code is used. Chemical code = CHESS Transport code = CAST3M					
Claye con	ey solution	11	D	Initial composition of the cement paste (for 1I of paste)			
Na ⁺ K ⁺ Ca ²⁺ Mg ²⁺ SO ₄ ²⁻ HCO ₃ ⁻	= 45.6 mmol/l = 1 mmol/l = 7.3 mmol/l = 6.6 mmol/l = 15.6 mmol/l = 3.3 mmol/l	Clayey solution	Cement paste	Jennite = 4.741 mol/l Ettringite = 0.131 mol/l Calcite = 0.148 mol/l Monocarbo = 0.254 mol/l Hydrotalcite = 0.046 mol/l Portlandite = 4.906 mol/l			
pH = 7	.1 ©CEA : no reproduct	tion or distribution possible without	authorization of CEA Mechanisms	and modelling of waste/cement			

DEN/DANS/DPC/SCCME

Simulations

DEN/DANS/DPC/SCCME

©CEA : no reproduction or distribution possible without authorization of CEA

- ← The cement material alteration is more important with cell transport experiments.
 - → The alterated depth is linked to the carbonation intensity.
 - \rightarrow Short-term (1, 2 months): no new phase as zeolites.
 - → Long-term (5 months, 1 year): experiments are in progress.
 - → Similar experiments will be performed with low-pH cement paste in 2009 (25 and 50°C).
 - → Other experiments will be achieved to evaluate the impact of mineralogical transformations on transport properties (diffusion coefficients, porosity and permeability) in order to simulate interaction changes.

Acknowledgements

œ

- Many thanks for the collaboration and discussions to Francine Brunet, X. Bourbon, C. Cau dit Coumes, T. Charpentier, E. Gaucher, C. Imbert and M. Schlegel.
- Financial support from the ANDRA.

